Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.866
Filter
1.
Rev. Ciênc. Saúde ; 13(3): 23-30, 20230921.
Article in English | LILACS | ID: biblio-1510835

ABSTRACT

Objective: The present study aims to evaluate the viability of adult human neural cells in culture obtained from traumatized brain tissues collected in emergency surgery procedures. Methods: Exploratory, descriptive, quantitative and cross-sectional study evaluating samples obtained from patients who underwent traumatic brain injury with extrusion of brain tissue submitted to cell culture in a standardized medium, being preserved during 168h. After observation under phase contrast microscopy and immunohistochemical processing for neuronal (MAP-2) and glial (GFAP) markers, morphometric parameters of neural cells (cell body area, dendritic field length and fractal dimension) were evaluated using ImageJ software, with data obtained after 24, 72 and 168h being compared using non-parametric Kruskal Wallis test, followed by Dunn's post hoc test. Results: The explant of the nervous tissue revealed a consolidated pattern of cell migration into the culture medium. Cell proliferation, upon reaching confluence, presented an aspect of cellular distribution juxtaposed along the culture medium at all time points analyzed. Both neurons and glial cells remained viable after 168h in culture, with their morphologies not varying significantly throughout the time points evaluated. Immunohistochemistry for MAP-2 showed a relatively well-preserved cytoskeletal organization. GFAP immunoreactivity revealed activated astrocytes especially at the later time point. Conclusions: Our results point out the viability of cell culture from traumatized human nervous tissue, opening up perspectives for the use of substances of natural origin that may contribute neuroprotectively to neuronal maintenance in culture, allowing future translational approach.


Subject(s)
Humans , Male , Adult , Brain Injuries , Cell Culture Techniques , Neurons , Wounds and Injuries , Traumatology , Immunohistochemistry
2.
Invest. educ. enferm ; 41(2): 11-25, junio 15 2023. ilus, tab
Article in English | LILACS, BDENF, COLNAL | ID: biblio-1437731

ABSTRACT

Background. Numerous health conditions in the older adult population can be attributed to falls, including traumatic brain injury (TBI), which can lead to devastating short and long-term sequelae. Older adults are also more likely to experience frailty, which encompasses physical, psychological, and social deficits that may lead to adverse health outcomes. Our literature review synthesizes current evidence for understanding frailty in the context of TBI among older adults using the Integral Model of Frailty as a framework. Content synthesis. A total of 32 articles were identified, and 9 articles were included. The results of this review indicate that outcomes resulting from TBI are closely linked to the physical, psychological, and social domains of frailty. Conclusions. A small amount of literature currently examines frailty in the context of TBI among older adults. Using the Integral Model of Frailty to Invest Educ Enferm. 2023; 41(2): e02Multidimensional Frailty and Traumatic Brain Injury among Older Adults:A Literature Reviewunderstand frailty in the context of TBI can help clinicians anticipate patient outcomes and improve care plans. We emphasize the need for a greater understanding of TBI concerning frailty to improve health outcomes among older adult patients.


Antecedentes. Numerosos trastornos de salud en la población de adultos mayores pueden atribuirse a las caídas, incluida la lesión cerebral traumática (LCT), que puede provocar secuelas devastadoras a corto y largo plazo. Los adultos mayores también son más propensos a experimentar fragilidad, que abarca déficits físicos, psicológicos y sociales que pueden conducir a resultados adversos para la salud. Nuestra revisión de la literatura sintetiza la evidencia actual para la comprensión de la fragilidad en el contexto de la LCT entre los adultos mayores utilizando el Modelo Integral de Fragilidad como marco. Síntesis del contenido. Un total de 32 artículos fueron identificados, y 9 artículos fueron incluidos. Los hallazgos de esta revisión indican que los resultados de la LCT están estrechamente relacionados con los dominios físico, psicológico y social de la fragilidad. Conclusión. Una pequeña cantidad de literatura examina actualmente la fragilidad en el contexto de la LCT entre los adultos mayores. Usar el Modelo Integral de Fragilidad para entender la fragilidad en el contexto de la LCT puede ayudar a los clínicos a anticipar los resultados de los pacientes y mejorar los planes de cuidados. Enfatizamos la necesidad de una mayor comprensión de la LCT en relación con la fragilidad para mejorar los resultados de salud entre los pacientes adultos mayores.


Antecedentes. Numerosos distúrbios de saúde na população idosa podem ser atribuídos a quedas, incluindo traumatismo cranioencefálico (TCE), que pode causar sequelas devastadoras a curto e longo prazo. Os idosos também são mais propensos a experimentar fragilidade, que engloba déficits físicos, psicológicos e sociais que podem levar a resultados adversos à saúde. Nossa revisão da literatura sintetiza as evidências atuais para entender a fragilidade no contexto do TCE entre idosos usando o Modelo Abrangente de Fragilidade como estrutura. Síntese de conteúdo. Um total de 32 artigos foram identificados e 9 artigos foram incluídos. As descobertas desta revisão indicam que os resultados do TCE estão intimamente relacionados aos domínios físico, psicológico e social da fragilidade. Conclusão.Um pequeno corpo de literatura atualmente examina a fragilidade no contexto do TCE entre adultos mais velhos. Usar o Modelo Abrangente de Fragilidade para entender a fragilidade no contexto do TCE pode ajudar os médicos a antecipar os resultados do paciente e melhorar os planos de tratamento. Enfatizamos a necessidade de uma maior compreensão do TCE em relação à fragilidade para melhorar os resultados de saúde entre pacientes idosos


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , Frail Elderly , Accidental Falls , Brain Injuries , Multiple Trauma
3.
In. Machado Rodríguez, Fernando; Liñares Divenuto, Norberto Jorge; Gorrasi Delgado, José Antonio; Terra Collares, Eduardo Daniel; Borba, Norberto. Traslado interhospitalario: pacientes graves y potencialmente graves. Montevideo, Cuadrado, 2023. p.127-139.
Monography in Spanish | LILACS, UY-BNMED, BNUY | ID: biblio-1523989
4.
Acta cir. bras ; 38: e387023, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1527595

ABSTRACT

Purpose: Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. Methods: MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. Results: After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. Conclusions: In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.


Subject(s)
Animals , Mice , Brain Injuries , Reperfusion Injury , Brain Ischemia , Oxidative Stress
5.
Neuroscience Bulletin ; (6): 138-162, 2023.
Article in English | WPRIM | ID: wpr-971541

ABSTRACT

Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.


Subject(s)
Humans , Transcranial Direct Current Stimulation/methods , Consciousness Disorders/etiology , Brain Injuries/complications , Consciousness , Neuroimaging
6.
Journal of Central South University(Medical Sciences) ; (12): 172-181, 2023.
Article in English | WPRIM | ID: wpr-971383

ABSTRACT

OBJECTIVES@#Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease. Early brain injury (EBI) and cerebral vasospasm are the main reasons for poor prognosis of SAH patients. The specific inhibitor of histone deacetylase 6 (HDAC6), tubastatin A (TubA), has been proved to have a definite neuroprotective effect on a variety of animal models of acute and chronic central nervous system diseases. However, the neuroprotective effect of TubA on SAH remains unclear. This study aims to investigate the expression and localization of HDAC6 in the early stage of SAH, and to evaluate the protective effects of TubA on EBI and cerebral vasospasm after SAH and the underlying mechanisms.@*METHODS@#Adult male SD rats were treated with modified internal carotid artery puncture to establish SAH model. In the first part of the experiment, rats were randomly divided into 6 groups: a sham group, a SAH-3 h group, a SAH-6 h group, a SAH-12 h group, a SAH-24 h group, and a SAH-48 h group. At 3, 6, 12, and 24 h after SAH modeling, the injured cerebral cortex of rats in each group was taken for Western blotting to detect the expression of HDAC6. In addition, the distribution of HDAC6 in the cerebral cortex of the injured side was measured by immunofluorescence double staining in SAH-24 h group rats. In the second part, rats were randomly divided into 4 groups: a sham group, a SAH group, a SAH+TubAL group (giving 25 mg/kg TubA), and a SAH+TubAH group (giving 40 mg/kg TubA). At 24 h after modeling, the injured cerebral cortex tissue was taken for Western blotting to detect the expression levels of HDAC6, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining to detect apoptosis, and hematoxylin and eosin (HE) staining to detect the diameter of middle cerebral artery.@*RESULTS@#The protein expression of HDAC6 began to increase at 6 h after SAH (P<0.05), peaked at 24 h (P<0.001), and decreased at 48 h, but there was still a difference compared with the sham group (P<0.05). HDAC6 is mainly expressed in the cytoplasm of the neurons. Compared with the sham group, the neurological score was decreased significantly and brain water content was increased significantly in the SAH group (both P<0.01). Compared with the SAH group, the neurological score was increased significantly and brain water content was decreased significantly in the SAH+TubAH group (both P<0.05), while the improvement of the above indexes was not significant in the SAH+TubAL group (both P>0.05). Compared with the sham group, the expression of eNOS was significantly decreased (P<0.01) and the expressions of iNOS and HDAC6 were significantly increased (P<0.05 and P<0.01, respectively) in the SAH group. Compared with the SAH group, the expression of eNOS was significantly increased, and iNOS and HDAC6 were significantly decreased in the SAH+TubA group (all P<0.05). Compared with the SAH group, the number of TUNEL positive cells was significantly decreased and the diameter of middle cerebral artery was significantly increased in the SAH+TubA group (both P<0.05) .@*CONCLUSIONS@#HDAC6 is mainly expressed in neurons and is up-regulated in the cerebral cortex at the early stage of SAH. TubA has protective effects on EBI and cerebral vasospasm in SAH rats by reducing brain edema and cell apoptosis in the early stage of SAH. In addition, its effect of reducing cerebral vasospasm may be related to regulating the expression of eNOS and iNOS.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/drug therapy , Vasospasm, Intracranial/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/therapeutic use , Histone Deacetylase 6/pharmacology , Apoptosis , Brain Injuries/drug therapy
7.
Acta cir. bras ; 38: e380723, 2023. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429534

ABSTRACT

Purpose: Stroke is an acute cerebrovascular disease. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus membranaceus with an established therapeutic effect on central nervous system diseases. This study examined the neuroprotective properties and possible mechanisms of AS-IV in stroke-triggered early brain injury (EBI) in a rat transient middle cerebral artery occlusion (MCAO) model. Methods: The neurological scores and brain water content were analyzed. 2,3,5-triphenyl tetrazolium chloride (TTC) staining was utilized to determine the infarct volume, neuroinflammatory cytokine levels, and ferroptosis-related genes and proteins, and neuronal damage and molecular mechanisms were evaluated by terminal deoxynucleotidyl transferase dutp nickend labeling (TUNEL) staining, western blotting, and real-time polymerase chain reaction. Results: AS-IV administration decreased the infarct volume, brain edema, neurological deficits, and inflammatory cytokines TNF-α, interleukin-1ß (IL-1ß), IL-6, and NF-κB, increased the levels of SLC7A11 and glutathione peroxidase 4 (GPX4), decreased lipid reactive oxygen species (ROS) levels, and prevented neuronal ferroptosis. Meanwhile, AS-IV triggered the Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of stroke. Conclusion: Hence, the findings of this research illustrate that AS-IV administration can improve delayed ischemic neurological deficits and decrease neuronal death by modulating nuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Rats , Saponins , Brain Injuries/therapy , Plant Extracts/administration & dosage , Astragalus Plant/chemistry , NF-E2-Related Factor 2/analysis , Neuroimmunomodulation , Stroke/complications , Ferroptosis
8.
Article in Portuguese | LILACS, CONASS, ColecionaSUS, SES-GO | ID: biblio-1444113

ABSTRACT

Caracterizar as alterações de linguagem encontradas em pacientes com lesão encefálica adquirida em fase aguda Métodos: Trata-se de uma pesquisa observacional, descritiva do tipo transversal. A avaliação foi realizada nas enfermarias de um hospital de urgências, com pacientes de idade superior a 18 anos, diagnóstico de lesão encefálica adquirida e tempo de internação de até 60 dias. O protocolo utilizado incluiu avaliação das praxias orais, expressão, compreensão da linguagem oral e leitura. Ao final, foi possível apresentar as hipóteses diagnósticas de afasias fluentes e não fluentes, disartria e sem alteração de linguagem. A análise dos dados foi realizada por meio de estatística descritiva através da distribuição de frequência absoluta e frequência relativa Resultados: A amostra foi composta por 24 pacientes sendo a maioria do gênero masculino, com média de idade de 51 anos. O diagnóstico de maior frequência foi Acidente Vascular Cerebral. Dos pacientes avaliados, 79% tiveram alterações de fala/linguagem. As hipóteses diagnósticas fonoaudiológicas encontradas foram: afasia global, afasia de broca, afasia transcortical mista, afasia de condução, afasia transcortical motora, afasia transcortical sensorial e disartria. Conclusão: A afasia global foi o transtorno de linguagem de maior ocorrência entre os indivíduos, bem como o gênero masculino e o acidente vascular cerebral. A avaliação da linguagem de pacientes com lesões encefálicas adquiridas na fase aguda é pertinente, pois promove o levantamento de alterações desde as perceptíveis até as mais discretas


To characterize the language disorders found in patients with brain injury acquired in the acute phase Methods: This is an observational, descriptive cross-sectional study. The evaluation was carried out in the wards of an emergency hospital, with patients aged over 18 years, diagnosed with acquired brain injury and hospitalization time of up to 60 days. The protocol used included assessment of oral praxis, expression, comprehension of oral language and reading. In the end, it was possible to present the diagnostic hypotheses of fluent and non-fluent aphasias, dysarthria and without language alteration. Data analysis was performed using descriptive statistics through the distribution of absolute frequency and relative frequency. Results: The sample consisted of 24 patients, most of whom were male, with a mean age of 51 years. The most frequent diagnosis was Cerebral Vascular Accident. Of the evaluated patients, 79% had speech/language disorders. The speech-language diagnostic hypotheses found were: global aphasia, drill aphasia, mixed transcortical aphasia, conduction aphasia, motor transcortical aphasia, sensory transcortical aphasia and dysarthria. Conclusion: Global aphasia was the most frequent language disorder among individuals, as well as males and stroke. The evaluation of the language of patients with brain injuries acquired in the acute phase is relevant, as it promotes the survey of changes from the perceptible to the most discreet


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Young Adult , Brain Injuries/complications , Stroke/complications , Language Disorders , Aphasia/diagnosis , Dysarthria
9.
Acta Physiologica Sinica ; (6): 255-268, 2023.
Article in Chinese | WPRIM | ID: wpr-981003

ABSTRACT

Cerebral hypoxia often brings irreversible damage to the central nervous system, which seriously endangers human health. It is of great significance to further explore the mechanism of hypoxia-associated brain injury. As a programmed cell death, ferroptosis mainly manifests as cell death caused by excessive accumulation of iron-dependent lipid peroxides. It is associated with abnormal glutathione metabolism, lipid peroxidation and iron metabolism, and is involved in the occurrence and development of various diseases. Studies have found that ferroptosis plays an important role in hypoxia-associated brain injury. This review summarizes the mechanism of ferroptosis, and describes its research progress in cerebral ischemia reperfusion injury, neonatal hypoxic-ischemic brain damage, obstructive sleep apnea-induced brain injury and high-altitude hypoxic brain injury.


Subject(s)
Humans , Infant, Newborn , Ferroptosis , Apoptosis , Hypoxia-Ischemia, Brain , Brain Injuries , Iron , Reperfusion Injury
10.
Chinese Journal of Contemporary Pediatrics ; (12): 193-201, 2023.
Article in Chinese | WPRIM | ID: wpr-971059

ABSTRACT

OBJECTIVES@#To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.@*METHODS@#A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats.@*RESULTS@#Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05).@*CONCLUSIONS@#Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Subject(s)
Animals , Female , Pregnancy , Rats , Body Weight , Brain Injuries/prevention & control , Caspase 1 , Inflammation/drug therapy , Interleukin-6 , Interleukin-8 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Flavonoids/therapeutic use
11.
Chinese Journal of Contemporary Pediatrics ; (12): 128-134, 2023.
Article in Chinese | WPRIM | ID: wpr-971049

ABSTRACT

OBJECTIVES@#To explore a new method for electroencephalography (EEG) background analysis in neonates with hypoxic-ischemic encephalopathy (HIE) and its relationship with clinical grading and head magnetic resonance imaging (MRI) grading.@*METHODS@#A retrospective analysis was performed for the video electroencephalography (vEEG) and amplitude-integrated electroencephalography (aEEG) monitoring data within 24 hours after birth of neonates diagnosed with HIE from January 2016 to August 2022. All items of EEG background analysis were enrolled into an assessment system and were scored according to severity to obtain the total EEG score. The correlations of total EEG score with total MRI score and total Sarnat score (TSS, used to evaluate clinical gradings) were analyzed by Spearman correlation analysis. The total EEG score was compared among the neonates with different clinical gradings and among the neonates with different head MRI gradings. The receiver operating characteristic (ROC) curve and the area under thecurve (AUC) were used to evaluate the value of total EEG score in diagnosing moderate/severe head MRI abnormalities and clinical moderate/severe HIE, which was then compared with the aEEG grading method.@*RESULTS@#A total of 50 neonates with HIE were included. The total EEG score was positively correlated with the total head MRI score and TSS (rs=0.840 and 0.611 respectively, P<0.001). There were significant differences in the total EEG score between different clinical grading groups and different head MRI grading groups (P<0.05). The total EEG score and the aEEG grading method had an AUC of 0.936 and 0.617 respectively in judging moderate/severe head MRI abnormalities (P<0.01) and an AUC of 0.887 and 0.796 respectively in judging clinical moderate/severe HIE (P>0.05). The total EEG scores of ≤6 points, 7-13 points, and ≥14 points were defined as mild, moderate, and severe EEG abnormalities respectively, which had the best consistency with clinical grading and head MRI grading (P<0.05).@*CONCLUSIONS@#The new EEG background scoring method can quantitatively reflect the severity of brain injury and can be used for the judgment of brain function in neonates with HIE.


Subject(s)
Infant, Newborn , Humans , Hypoxia-Ischemia, Brain/diagnostic imaging , Retrospective Studies , Brain Injuries , Electroencephalography , ROC Curve
12.
Acta Physiologica Sinica ; (6): 108-114, 2023.
Article in Chinese | WPRIM | ID: wpr-970111

ABSTRACT

Radiation-induced brain injury is a serious complication after cranio-cerebral radiotherapy, which affects the patient's quality of life and survival. A large number of studies have shown that various mechanisms such as neuronal apoptosis, blood-brain barrier damage, and synaptic dysfunction may be related to radiation-induced brain injury. Acupuncture has an important role in clinical rehabilitation of various brain injuries. As a new type of acupuncture, electroacupuncture has the characteristics of strong control ability, uniform and long-lasting stimulation, and is widely used in clinic. This article reviews the effects and mechanisms of electroacupuncture on radiation-induced brain injury, in order to provide a theoretical basis and experimental support for reasonable clinical application.


Subject(s)
Humans , Electroacupuncture , Quality of Life , Brain , Brain Injuries , Blood-Brain Barrier
13.
Chinese Critical Care Medicine ; (12): 554-557, 2023.
Article in Chinese | WPRIM | ID: wpr-982632

ABSTRACT

Compared with conventional cardiopulmonary resuscitation (CCPR), extracorporeal cardiopulmonary resuscitation (ECPR) can improve the survival rate of patients with cardiac arrest, and reduce the risk of reperfusion injury. However, it is still difficult to avoid the risk of secondary brain damage. Low temperature management has good neuroprotective potential for ECPR patients, which minimizes brain damage. However, unlike CCPR, ECPR has no clear prognostic indicator. The relationship between ECPR combined with hypothermia management-related treatment measure and neurological prognosis is not clear. This article reviews the effect of ECPR combined with different therapeutic hypothermia on brain protection and provides a reference for the prevention and treatment of neurological injury in patients with ECPR.


Subject(s)
Humans , Brain , Cardiopulmonary Resuscitation , Brain Injuries , Hypothermia, Induced , Heart Arrest
14.
Chinese Critical Care Medicine ; (12): 376-380, 2023.
Article in Chinese | WPRIM | ID: wpr-982597

ABSTRACT

OBJECTIVE@#To investigate whether the acetaldehyde dehydrogenase 2 specific activator, Alda-1, can alleviate brain injury after cardiopulmonary resuscitation (CPR) by inhibiting cell ferroptosis mediated by acyl-CoA synthetase long-chain family member 4/glutathione peroxidase 4 (ACSL4/GPx4) pathway in swine.@*METHODS@#Twenty-two conventional healthy male white swine were divided into Sham group (n = 6), CPR model group (n = 8), and Alda-1 intervention group (CPR+Alda-1 group, n = 8) using a random number table. The swine model of CPR was reproduced by 8 minutes of cardiac arrest induced by ventricular fibrillation through electrical stimulation in the right ventricle followed by 8 minutes of CPR. The Sham group only experienced general preparation. A dose of 0.88 mg/kg of Alda-1 was intravenously injected at 5 minutes after resuscitation in the CPR+Alda-1 group. The same volume of saline was infused in the Sham and CPR model groups. Blood samples were collected from the femoral vein before modeling and 1, 2, 4, 24 hours after resuscitation, and the serum levels of neuron specific enolase (NSE) and S100 β protein were determined by enzyme-linked immunosorbent assay (ELISA). At 24 hours after resuscitation, the status of neurologic function was evaluated by neurological deficit score (NDS). Thereafter, the animals were sacrificed, and brain cortex was harvested to measure iron deposition by Prussian blue staining, malondialdehyde (MDA) and glutathione (GSH) contents by colorimetry, and ACSL4 and GPx4 protein expressions by Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of NSE and S100β after resuscitation were gradually increased over time, and the NDS score was significantly increased, brain cortical iron deposition and MDA content were significantly increased, GSH content and GPx4 protein expression in brain cortical were significantly decreased, and ACSL4 protein expression was significantly increased at 24 hours after resuscitation in the CPR model and CPR+Alda-1 groups, which indicated that cell ferroptosis occurred in the brain cortex, and the ACSL4/GPx4 pathway participated in this process of cell ferroptosis. Compared with the CPR model group, the serum levels of NSE and S100 β starting 2 hours after resuscitation were significantly decreased in the CPR+Alda-1 group [NSE (μg/L): 24.1±2.4 vs. 28.2±2.1, S100 β (ng/L): 2 279±169 vs. 2 620±241, both P < 0.05]; at 24 hours after resuscitation, the NDS score and brain cortical iron deposition and MDA content were significantly decreased [NDS score: 120±44 vs. 207±68, iron deposition: (2.61±0.36)% vs. (6.31±1.66)%, MDA (μmol/g): 2.93±0.30 vs. 3.68±0.29, all P < 0.05], brain cortical GSH content and GPx4 expression in brain cortical was significantly increased [GSH (mg/g): 4.59±0.63 vs. 3.51±0.56, GPx4 protein (GPx4/GAPDH): 0.54±0.14 vs. 0.21±0.08, both P < 0.05], and ACSL4 protein expression was significantly decreased (ACSL4/GAPDH: 0.46±0.08 vs. 0.85±0.13, P < 0.05), which indicated that Alda-1 might alleviate brain cortical cell ferroptosis through regulating ACSL4/GPx4 pathway.@*CONCLUSIONS@#Alda-1 can reduce brain injury after CPR in swine, which may be related to the inhibition of ACSL4/GPx4 pathway mediated ferroptosis.


Subject(s)
Male , Animals , Swine , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis , Brain Injuries , Glutathione , Cardiopulmonary Resuscitation , Ligases , Iron
15.
Journal of Biomedical Engineering ; (6): 442-449, 2023.
Article in Chinese | WPRIM | ID: wpr-981561

ABSTRACT

The causes of mental disorders are complex, and early recognition and early intervention are recognized as effective way to avoid irreversible brain damage over time. The existing computer-aided recognition methods mostly focus on multimodal data fusion, ignoring the asynchronous acquisition problem of multimodal data. For this reason, this paper proposes a framework of mental disorder recognition based on visibility graph (VG) to solve the problem of asynchronous data acquisition. First, time series electroencephalograms (EEG) data are mapped to spatial visibility graph. Then, an improved auto regressive model is used to accurately calculate the temporal EEG data features, and reasonably select the spatial metric features by analyzing the spatiotemporal mapping relationship. Finally, on the basis of spatiotemporal information complementarity, different contribution coefficients are assigned to each spatiotemporal feature and to explore the maximum potential of feature so as to make decisions. The results of controlled experiments show that the method in this paper can effectively improve the recognition accuracy of mental disorders. Taking Alzheimer's disease and depression as examples, the highest recognition rates are 93.73% and 90.35%, respectively. In summary, the results of this paper provide an effective computer-aided tool for rapid clinical diagnosis of mental disorders.


Subject(s)
Humans , Mental Disorders/diagnosis , Alzheimer Disease/diagnosis , Brain Injuries , Electroencephalography , Recognition, Psychology
16.
Journal of Zhejiang University. Science. B ; (12): 258-264, 2022.
Article in English | WPRIM | ID: wpr-929057

ABSTRACT

Drinking culture has high significance in both China and the world, whether in the entertainment sector or in social occasions; according to the World Health Organization's 2018 Global Alcohol and Health Report, about 3 million people died from excessive drinking in 2016, accounting for 5.3% of the total global deaths that year. Oxidative stress and inflammation are the most common pathological phenomena caused by alcohol abuse (Snyder et al., 2017). Scutellarin, a kind of flavonoid, is one of the main active ingredients extracted from breviscapine. It exerts anti-inflammatory, antioxidant, and vasodilation effects, and has been used to treat cardiovascular diseases and alcoholic liver injury. Although scutellarin can effectively alleviate multi-target organ injury induced by different forms of stimulation, its protective effect on alcoholic brain injury has not been well-defined. Therefore, the present study established an acute alcohol mice brain injury model to explore the effect of scutellarin on acute alcoholic brain injury. The study was carried out based on the targets of oxidative stress and inflammation, which is of great significance for the targeted therapy of clinical alcohol diseases.


Subject(s)
Animals , Humans , Mice , Apigenin/therapeutic use , Brain Injuries/drug therapy , Glucuronates/therapeutic use , Oxidative Stress
17.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 337-340, 2022.
Article in Chinese | WPRIM | ID: wpr-935806

ABSTRACT

Objective: To analyze the correlation of bispectral index (BIS) with the prognosis of patients with acute severe carbon monoxide poisoning (ASCMP) and its predictive value of adverse outcomes. Methods: In March 2021, 106 ASCMP patients who were treated in Harrison International Peace Hospital Affiliated to Hebei Medical University from January 2019 to December 2020 were taken as research objects. All patients underwent 24-hour BIS monitoring after admission, and were divided into good prognosis group (n=75) and poor prognosis group (n=31) according to the prognosis of the patients' cranial nerve function after 60 d. The general conditions, Acute Physiology and Chronic Health Evaluation Ⅱ (APACHEⅡ) score, Glasgow Coma Scale (GCS) score at admission and 24-hour BIS mean were compared between the two groups. Pearson correlation analysis was used to analyze the correlations between the 24-hour BIS mean and GCS score at admission, APACHEⅡ score and coma time. The receiver operating characteristic (ROC) curve was drawn to analyze the predictive value of 24-hour BIS mean, GCS score at admission, APACHEⅡ score and coma time on adverse outcome of ASCMP patients. Results: The coma time and APACHEⅡ score of the patients in the poor prognosis group were significantly higher than those in the good prognosis group, the GCS score at admission and 24-hour BIS mean were significantly lower than those in the good prognosis group (P<0.05) . Pearson correlation analysis showed that the 24-hour BIS mean was positively correlated with the GCS score at admission, and negatively correlated with the APACHEⅡ score, coma time (r=0.675, -0.700, -0.565, P<0.001) . The 24-hour BIS mean had the highest predictive value for adverse outcome of ASCMP patients, with a cut-off value of 74, the area under the curve was 0.883 (95%CI: 0.814-0.951, P<0.001) , and the sensitivity and specificity were 73.3% and 87.1%, respectively. Conclusion: The 24-hour BIS mean has a good correlation with the acute brain nerve injury, the severity of the disease and coma time of patients with ASCMP. And it has a high predictive value for the adverse outcome in patients with ASCMP.


Subject(s)
Humans , APACHE , Brain Injuries , Carbon Monoxide Poisoning/diagnosis , Coma , Prognosis , ROC Curve , Retrospective Studies , Sensitivity and Specificity
18.
Acta cir. bras ; 37(1): e370108, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1374064

ABSTRACT

Purpose: Traumatic brain injury (TBI) remains a major public health problem and cause of death. Ulinastatin (UTI), a serine protease inhibitor, has been reported to have an anti-inflammatory effect and play a role in immunoregulation and organ protection by reducing reactive oxygen species (ROS) production, oxidative stress and inflammation. However, the neuroprotective of UTI in TBI has not been confirmed. Therefore, this study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in TBI-induced EBI in a C57BL/6 mouse model. Methods: The neurological score and brain water content were evaluated. Enzyme-linked immunosorbent assay was used to detect neuroinflammatory cytokine levels, ROS and malondialdehyde detection to evaluate oxidative stress levels, and TUNEL staining and western blotting to examine neuronal damages and their related mechanisms. Results: Treatment with UTI markedly increased the neurological score; alleviated brain oedema; decreased the inflammatory cytokine tumour necrosis factor a, interleukin-1ß (IL-1ß), IL-6 and nuclear factor kappa B (NF-kB) levels; inhibited oxidative stress; decreased caspase-3 and Bax protein expressions; and increased the Bcl-2 levels, indicating that UTI-mediated inhibition of neuroinflammation, oxidative stress and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of UTI is partly dependent on the TLR4/NF-kB/p65 signalling pathway. Conclusions: Therefore, this study reveals that UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, oxidative stress and apoptosis.


Subject(s)
Animals , Mice , Brain Injuries/therapy , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/therapeutic use , Apoptosis , Oxidative Stress
19.
Journal of Forensic Medicine ; (6): 520-525, 2022.
Article in English | WPRIM | ID: wpr-984146

ABSTRACT

Visual event-related potential (ERP) is an electrophysiological technique that objectively reflects the cognitive processing of stimulus from the perspective of detecting and recording neural electrophysiology responses using different paradigms of visual stimuli. Its endogenous components are closely related to advanced psychological activities. This article introduces the characteristics of main endogenous components including visual mismatch negativity (vMMN), N200 and P300, reviews the research progress of visual ERP in the sequelae of brain injury and objective evaluation of visual function, and prospects the application prospect of visual ERP in the field of forensic medicine.


Subject(s)
Humans , Brain Injuries, Traumatic/complications , Evoked Potentials , Brain Injuries , Forensic Medicine
20.
Journal of Forensic Medicine ; (6): 223-230, 2022.
Article in English | WPRIM | ID: wpr-984113

ABSTRACT

OBJECTIVES@#To apply the convolutional neural network (CNN) Inception_v3 model in automatic identification of acceleration and deceleration injury based on CT images of brain, and to explore the application prospect of deep learning technology in forensic brain injury mechanism inference.@*METHODS@#CT images from 190 cases with acceleration and deceleration brain injury were selected as the experimental group, and CT images from 130 normal brain cases were used as the control group. The above-mentioned 320 imaging data were divided into training validation dataset and testing dataset according to random sampling method. The model classification performance was evaluated by the accuracy rate, precision rate, recall rate, F1-value and AUC value.@*RESULTS@#In the training process and validation process, the accuracy rate of the model to classify acceleration injury, deceleration injury and normal brain was 99.00% and 87.21%, which met the requirements. The optimized model was used to test the data of the testing dataset, the result showed that the accuracy rate of the model in the test set was 87.18%, and the precision rate, recall rate, F1-score and AUC of the model to recognize acceleration injury were 84.38%, 90.00%, 87.10% and 0.98, respectively, to recognize deceleration injury were 86.67%, 72.22%, 78.79% and 0.92, respectively, to recognize normal brain were 88.57%, 89.86%, 89.21% and 0.93, respectively.@*CONCLUSIONS@#Inception_v3 model has potential application value in distinguishing acceleration and deceleration injury based on brain CT images, and is expected to become an auxiliary tool to infer the mechanism of head injury.


Subject(s)
Humans , Brain/diagnostic imaging , Brain Injuries , Deep Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL